Photochemical Reaction of 1,3-Diketones. Transformation of 2-Benzoyl-2-methylcyclohexanones to 4-Benzoyl-2-methylcyclohexanones

NOTES

Tadashi Hasegawa,* Michiko Nishimura, Yukio Kodama,† and Michikazu Yoshioka*.†
Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi, Koganei, Tokyo 184
†Department of Chemistry, Saitama University, Shimo-okubo, Urawa, Saitama 338
(Received September 12, 1989)

Synopsis. Upon irradiation, 2-benzoyl-2-methylcyclohexanone gave 4-benzoyl-2-methylcyclohexanone via Type II cyclization and a subsequent ring opening in 79% yield, whereas 2-benzoylcyclohexanone gave only the Type II elimination product. 2-Benzoyl-2-methyl-1-tetralone also underwent phototransformation to 4-benzoyl-2-methyl-1-tetralone.

Type II photoelimination and cyclization reactions of alkyl aryl ketones have been extensively investigat-These reactions involve a 1,4-biradical intermediate, formed through γ -hydrogen abstraction by the excited carbonyl group.^{2,3)} Aryl cycloalkyl ketones also undergo Type II reactions, though the quantum yields are not high. 4) The introduction of a carbonyl group to the α -position of the cycloalkane ring in the aryl cycloalkyl ketones increases the photoreactivity of the ketones. The quantum yield of Type II elimination for 2-benzoylcyclohexanone (la)⁵⁾ is ca. 34-times higher than that for benzoylcyclohexane.4e) A methyl group on the α -carbon of aryl cycloalkyl ketones favors the Type II cyclization over elimination, along with an enhancement of the the α -cleavage. 4c,e) We report here on the photoreaction of 2-benzoylcyclohexanones in which a remarkable changeover in the reaction course was produced by introducing a methyl group on the 2-position.

Previously, the photoreaction of **la** was reported to give only a Type II elimination product, 1-phenyl-6-heptene-1,3-dione (**2**), in 71—82% yield.^{5,6)} No evidence

for the formation of the cyclization product has been observed.5-7) On the other hand, irradiation of 1b gave 3 in 79% yield. The structure of 3 was elucidated from spectral data and elemental analysis. The ¹H NMR spectrum of 3 showed a doublet methyl signal (δ 1.08) and a C4-hydrogen signal being coupled to four hydrogens (δ 3.93). Neither the Type II elimination product nor α -cleavage products could be isolated. On the contrary, the photoreaction of la yielded no 4benzoylcyclohexanone, corresponding to a photorearangement. Similarly, a photorearrangement of 2benzoyl-2-methyl-1-tetralone (6) in benzene gave a rearranged product, 8, in 36% yield,8 while 2-benzoyl-1-tetralone, which exists almost completely in the enol form, did not show any photoreactivity. The ¹H NMR of 8 showed a methyl doublet (δ 1.31) and a C₄-methine hydrogen coupled with two hydrogens (δ 5.09).

The formation of the 4-benzoylcyclohexanone 3 and the 4-benzoyltetralone 8 can be explained in terms of a retro-aldol type ring opening of Type II cyclization products 5 and 7, respectively. The undetectability of the bicyclic alcohol, both 5 and 7, is not surprising in view of their thermal instability. We have already reported a similar rearrangement, ethyl 2-benzoylvalerates rearranged to ethyl 4-benzoylvalerates via cyclobutanols,⁹⁾ though the chemical and the quantum yield were low. In that case, the main reaction course was Type II elimination.⁹⁾ The rearrangement of 1b was very efficient. The quantum yields for the

Table 1.	Quantum	Yields and	Kinetic Data
----------	---------	------------	--------------

Y	$oldsymbol{\phi}_{ ext{cy}}{}^{ ext{a})}$	$\phi_{el}{}^{b)}$	$\phi_{lpha^{ m c)}}$	$\frac{k_{q^{d)}}}{M^{-1}}$	$\frac{\tau}{10^{-9} \mathrm{s}}$	$\frac{1/\tau}{10^8 \mathrm{s}^{-1}}$	Ref.
Ketone							
Benzoylcyclohexane	e)	0.024	_	0.74	0.15	68	4e
1-Methylbenzoylcyclohexane	$0.045^{\rm fj}$	_	$0.20^{(f)}$	29	5.8	1.7	4 e
la		0.82		9.1	1.8	5.5	5
1b	0.79	_		56	11.2	0.9	

a) Quantum yield for Type II cyclization product formation in benzene. b) Quantum yield for Type II elimination product formation in benzene. c) Quantum yield for α -cleavage product formation. d) Slope of Stern-Volmer plots for quenching of Type II product. e) Not detected. f) In 0.01 M dodecanethiol-benzene.

formation of the 4-benzoylcyclohexanone, 3, and the disappearance of the starting ketone, 1b, were 0.79 and unity, respectively. These values indicate the absence of the reverse hydrogen-transfer process from the 1,4biradical intermediate, 4b, to the starting material, 1b, because of intramolecular hydrogen bonding between the hydroxyl and the cycloalkanone carbonyl groups. The hydrogen bonding between the hydroxyl group and the cyclohexanone carbonyl group also possible in the cyclobutanol, 5 and so the ring opening occurs The changeover from exclusive Type II elimination to exclusive Type II cyclization upon α methyl substitution has rarely been observed. In a rigid bicycloalkyl phenyl ketone system, a 2-benzoylbicyclo[2.2.2]octane and 2-benzoyl-2-methylbicyclo-[2.2.2] octane pair, this changeover has been reported. 4d However, in a flexible monocycloalkyl phenyl ketone system, the main competing process is the α -cleavage reaction; 1-benzoyl-1-methylcyclohexane mainly gave an α -cleavage product, together with Type II cyclization product. 4e) The enhanced formation of a Type II cyclization product caused by the α -methyl group can be explained analogously to a similar behavior in acyclic and cyclic alkyl aryl ketones with the α -methyl group, in terms of the presence of unfavourable nonbonding interactions in the transition states for elimination.4c,10)

The photoreaction of **lb** was quenched by 2,5dimethyl-2,4-hexadiene with a linear Stern-Volmer plots. The kinetic data are summarized in Table 1. The $k_q \tau$ value was determined to be 56 M⁻¹. The lifetime (τ) and $1/\tau$ values were calculated to be 11.2×10^{-9} s and 0.9×10^{8} s⁻¹ respectively, assuming k_q to be the diffusion-controlled rate constant (5×109 M⁻¹ s^{-1} in benzene). The lifetime (τ) of **1b** is twice that of 1-methylbenzoylcyclohexane. The rate constant for the γ -hydrogen abstraction (k_r) can be defined as $k_r = \phi_{\text{Type II}}/\tau$. Therefore, the k_r value for **1b** can be calculated to be 0.71×108 s⁻¹. This value is ca. 9-times larger than that for 1-methylbenzoylcyclohexane. 4e) These results reflect the fact that the Type II reaction is the main reaction course in 1b, whereas α -cleavage is the main course in the 1-methylcyclohexane. This might be due to an increase in the population of favorable conformers for the γ -hydrogen abstraction because of a decrease in the ring flexibility by the introduction of a carbonyl group in the cycloalkane ring or a nonbonding carbonyl-carbonyl repulsive interaction.

Experimental

The IR spectra were recorded with a JASCO A-3 spectrometer, ¹H and ¹³C NMR spectra were measured with a JEOL FX90Q or a Bruker AM400 spectrometer using tetramethylsilane as an internal standard, and the mass spectra were recorded with a JEOL JMS-O1SG-2 spectrometer. An Ushio 100 W or 450 W high-pressure mercury lamp was used as irradiation source.

Preparation of 2-Benzoyl-2-methylcyclohexanone (1b). A solution of tetrabutylammonium bromide (1.48 g, 4.6 mmol) and sodium hydroxide (0.38 g, 9.5 mmol) in 5 cm³ water was added to a stirred solution of la (0.92 g, 4.6 mmol) and methyl iodide (3.24 g, 2.3 mmol) in 5 cm³ chloroform. The mixture was stirred overnight at room temperature and then extracted with 10 cm³ of chloroform. The chloroform solution was washed with water and then dried over calcium chloride. After filtration the solvent was evaporated in To the residue was added 10 cm³ of benzene. An insoluble material in benzene was filtered off. The residue was chromatographed on silica-gel column (Merck Kieselgel 60). Elution with benzene gave **1b** (0.77 g, 3.6 mmol, 78%): bp 116 °C/3 mmHg (1 mmHg=133.222 Pa); IR (neat) 1670 and 1710 cm^{-1} ; ¹H NMR (CDCl₃) δ =1.17—2.97 (8H, m, CH₂), 1.47 (3H, s, CH₃), 7.14—7.63 (3H, m, aromatic), and 7.8—8.0 (2H, m, aromatic). Found: C, 77.51; H, 7.49%. Calcd for C₁₄H₁₆O₂: C, 77.75; H, 7.46%.

Preparation of 2-Benzoyl-2-methyl-1-tetralone (6). The diketone 6 was prepared according to a similar procedure previously reported by us.¹¹⁾ Condensation of 1-tetralone (2.92 g. 20 mmol) and benzaldehyde (2.12 g, 20 mmol) using N-methylanilinomagnesium bromide (prepared from 20 mmol of ethylmagnesium bromide and 20 mmol of Nmethylaniline) as a condensing agent followed by oxidation with Jones reagent gave 2-benzoyl-1-tetralone (2.00 g, 8.0 mol, 40%): mp 68 °C (from hexane); IR (CHCl₃) 1615 and 1600 cm^{-1} ; ${}^{1}\text{H NMR}$ (CDCl₃) δ =2.66—2.88 (4H, m, CH₂-CH₂), 7.05—7.75 (7H, m, aromatic), 7.80—8.15 (2H, m, aromatic), and 16.90 (1H, s, OH).¹²⁾ Found: C, 81.65; H, 5.71%. Calcd for C₁₇H₁₄O₂: C, 81.58; H, 5.64%. The 2benzoyl-1-tetralone was methylated by methyl iodide (1.20 g, 8.5 mmol) and sodium hydride (0.34 g, 8.5 mmol) in benzene-DMF (2/1 (v/v), 20 cm3) according to a method in the literature.¹³⁾ Column chromatography on silica gel eluted with hexane-ethyl acetate (6:1) and recrystallization from hexane gave 6 (1.3 g, 5.0 mmol, 63%): mp 102 °C; IR (CHCl₃) 1690 cm^{-1} ; ¹H NMR (CDCl₃) δ =4.59 (3H, s, CH₃), 1.75—2.36 (1H, m, 5-H), 2.58—3.35 (3H, m, 4-H₂ and 5-H), and 7.08— 8.15 (9H, m, aromatic). Found: C, 81.86; H, 6.18%. Calcd for C₁₈H₁₆O₂: C, 81.79; H, 6.10%.

Photoreaction of 1b. A solution of 1b (201 mg, 0.93 mmol) in 50 cm³ of benzene was irradiated with a 450 W high-pressure mercury lamp through a Pyrex filter for

20 min. After removing the solvent the residue was chromatographed on a silica-gel column. Elution with benzene gave the unreacted starting ketone, 1b (92 mg), and 3 3: mp 87-88 °C (from a mixture of benzene-hexane); IR (KBr) 1680 and 1720 cm⁻¹; ¹H NMR (CDCl₃) δ =1.08 (3H, d, J=6.5 Hz, CH₃), 1.70 (1H, ddd, J=12.0, 12.0, and 12.0 Hz, 3-H), 1.97 (1H, ddd, J=6.5, 12.0, and 12.0 Hz, 5-H), 2.24—2.29 (2H, m, 3-H and 5-H), 2.47— 2.82 (3H, m, 2-H and 6-H₂), 3.93, (1H, dddd, J=3.3, 3.3, 12.0, and 12.0 Hz, 4-H), 7.49—7.62 (3H, m, aromatic), and 7.94— 8.00 (2H, m, aromatic); 13 C NMR (CDCl₃) δ =14.3 (q), 29.7 (t), 37.9 (t), 40.3 (t), 43.8 (d), 44.1 (d), 128.1 (d, 2C), 128.7 (d, 2C), 133.2 (d), 135.7 (s), 201.3 (s), and 211.1 (s); MS m/z 216 (M⁺). Found: C, 77.74; H, 7.39%. Calcd for C₁₄H₁₆O₂: C, 77.75; H, 7.41%.

Photoreaction of 6. A solution of 6 (599 mg, 2.274mmol) in 120 cm³ of benzene was irradiated with a 100 W highpressure mercury lamp through a Pyrex filter for 2.5 h. After removing the solvent the residue was chromatographed on a silica-gel column. Elution with hexane-ethyl acetate (6:1) gave the unreacted starting ketone, 6 (353 mg), and the rearranged product, **8** (88 mg, 36%).⁸⁾ **8**: mp 78 °C (from cyclohexane); IR (CHCl₃) 1690 cm⁻¹; ¹H NMR (CDCl₃) δ =1.31 (3H, d, J=6.5 Hz, CH₃), 2.26 (1H, ddd, J=13.5, 13.5, and 13.5 Hz, 5-H), 2.36 (1H, ddd, J=4.5, 4.5, and 13.5 Hz, 5-H), 2.74 (1H, ddq, J=4.5, 13.5, and 6.5 Hz, 6-H), 5.09 (1H, dd, J=4.5 and 13.5 Hz, 4-H), 7.04 (1H, d, J=7.5 Hz), 7.39 (1H, t, J=7.5 Hz), 7.43 (1H, t, J=7.5 Hz), 7.52 (2H, t, J=7.5 Hz), 7.62 (1H, t, J=7.5 Hz), 8.03 (2H, d, J=7.5 Hz), and 8.12 (1H, d, I=7.5 Hz) (aromatic); ¹³C NMR (CDCl₃) $\delta=15.3$ (q), 35.6 (t), 41.9 (d), 47.6 (d), 127.4 (d), 127.8 (d), 128.6 (d), 128.8 (d, 2C), 128.9 (d, 2C), 132.7 (s), 133.4 (d), 133.6 (d), 136.7 (s), 142.2 (s), 199.1 (s), and 201.2 (s). Found: C, 81.61; H, 6.09%. Calcd for C₁₈H₁₆O₂: C, 81.79; H, 6.10%.

Quantum Yields and Rate Constant Determination: Benzene solutions of 1b (ca. 0.05 mol l⁻¹) containing a known concentration of eicosane (ca. 0.001 mol l⁻¹) as a caliburant, were placed in 15×150 mm Pyrex culture tubes. In quenching experiments, the solutions also contain appropriate concentrations of 2,5-dimethyl-2,4-hexadiene. The tubes were degassed with three freeze-pump-thaw cycles and then sealed. Irradiation was performed on a "merry-goround" apparatus with a 450 W high-pressure mercury lamp. A potassium chromate filter solution was used to isolate the 313 nm line. Analyses were performed on a Shimazu GC-4B gas chromatograph equipped with a flame ionization detector using a 2 m column containing OV-1.

Quantum yields were determined by the use of a valerophenone actinometer. $^{2b)}$

References

- 1) P. J. Wagner, Acc. Chem. Res., 4, 168 (1971); "Rearrangements in Ground and Excited States," ed by P. de Mayo, Vol. 3, Academic Press, New York (1980), p. 381.
- 2) a) P. J. Wagner and R. G. Zepp, J. Am. Chem. Soc., 94, 287 (1972); b) P. J. Wagner, P. A. Kelso, and R. G. Zepp, ibid., 94, 7480 (1972); c) P. J. Wagner, P. A. Kelso, A. E. Kemppainen, J. M. McGrath, H. N. Schott, and R. G. Zepp, ibid., 94, 7506 (1972).
 - 3) J. C. Scaiano, Acc. Chem. Res., 15, 252 (1982).
- 4) a)A. Padwa, E. Alexander, and M. Niemcyzk, *J. Am. Chem. Soc.*, **91**, 456 (1969); b) A. Padwa and D. Eastman, *ibid.*, **91**, 462 (1969); c) F. D. Lewis, R. W. Johnson, and R. A. Ruden, *ibid.*, **94**, 4292 (1972); d) A. Padwa and W. Eisenberg, *ibid.*, **94**, 5852 (1972); *ibid.*, **94**, 5859 (1972); e) F. D. Lewis, R. W. Johnson, and D. E. Johnson, *ibid.*, **96**, 6090 (1974); f) F. D. Lewis, R. W. Johnson, and D. R. Kory, *ibid.*, **96**, 6100 (1974); g) P. J. Wagner and B. J. Scheve, *ibid.*, **99**, 1858 (1977) and references cited therein.
- 5) T. Hasegawa, M. Nishimura, and M. Yoshioka, J. Phys. Org. Chem., in press.
- 6) C. L. McIntosh, Can. J. Chem., 45, 2267 (1967).
- 7) M. F. Gorodetsky and Y. Mazur, Tetrahedron Lett., 1963, 369.
- 8) On silica-gel TLC, the $R_{\rm f}$ -value of the product **8** was close to that of the starting ketone **6**. Therefore, the complete separation of **8** required repeated chromatography, which caused the relatively low isolated yield of **8**. The GC analysis of the iradiation mixture revealed that the yield of **6** was 70% at 60% conversion.
- 9) T. Hasegawa, Y. Arata, M. Endoh, and M. Yoshioka, *Tetrahedron*, 41, 1667 (1985).
- 10) F. D. Lewis and T. H. Hiward, J. Am. Chem. Soc., 94, 3852 (1974).
- 11) M. Yoshioka, M. Saitoh, H. Arai, K. Ichikawa, and T. Hasegawa, *Tetrahedron*, **43**, 5237 (1987).
- 12) These data indicates that 2-benzoyl-1-tetralone exists completely in the enol form in solution.
- 13) J. C. Shivers, M. L. Dilion, and C. R. Hauser, J. Am. Chem. Soc., **69**, 119 (1947).
- 14) S. L. Murov, "Handbook of Photochemistry," Mercel Dekker, New York (1973), p. 99.